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The self-similar solution is constructed for the Boussinesq equations describing 
free convection near a differentially heated local section on a horizontal plane. 

Conically symmetric flows are an extensive and important class of self-similar solutions 
of the equations of motion of a viscous incompressible fluid. Among them are the known 
Landau [I] and Squire [2] analytic solutions as well as solutions of problems of a water- 
spout, of swirling jets possessing quite nontrivial properties [3]. A distinctive feature 
of the class is the inversely proportional dependence of the velocity on the distance to the 
origin v ~ 1/R. Consequently, viscous and convective momentum transfer generate fluxes of 
identical order of magnitude in generally the whole flow domain. The interaction, or more 
accurately, counteraction results occasionally in paradoxical effects [4]. 

If an analogous class of self-similar solutions is examined for the thermogravitational 
convection equations in the Boussinesq approximation, then it is easy to see that the Archi- 
medes force should be proportional to I/R 3. The problem of a point source of heat is seem- 
ingly simplest. Precisely such a model was used in a number of papers [5-8] to analyze the 
influence of the buoyancy forces on jet viscous ~luid flows. However, in the problems con ~ 

sidered the Archimedes force and temperature are proportional to I/R. Consequently, the 
self-similar solutions were obtained within the framework of the boundary layer approxima- 
tion and under the assumption of smallness of the buoyancy effects. 

Another case is examined here, when the point singularity of the temperature field is 
a quadrupole, which assures the necessary dependence T ~ I/R 3. The total heat flux from the 

singular point is zero here while the temperature distribution on a sphere of given radius 
is sign-variable in nature. Despite a certain exoticness of such a distribution, tied to 
the self-similarity requirement, such a formulation is the simplest scheme for real situa- 
tions. It can he located on the horizontal plane of a hemisphere on which a differential 

temperature distribution is given. If the apex is hot and the base is cold, then such a 
situation will provisionally be called a "volcano," while the inverse is an "iceberg." As 
the hemisphere radius tends to zero, and under an additional requirement of a zero total 
heat flux, the problem under consideration will be obtained. 

Thus, on a plane @ = ~/2 let a temperature distribution be given according to the law 
T = To + y/R 3. Here and henceforth, a spherical (R, @, ~) coordinate system is utilized. 
The axisymmetric case is examined when the velocity field (VR, v@, 0) and temperature are 
independent of the azimuthal angle @, here @ is the angle between the radius-vector and the 
axis of symmetry. Satisfaction of the attachment conditions is required on the plane. 

The formulated boundary value problem allows for a two-parameter class of solutions 
dependent on the Grasshof Gr = 8~g/~ 2 and Prandtl Pr = ~/X criteria. Because of the absence 
of a characteristic length scale, absolute self-similarity holds [9] and the following re- 
presentation is valid: 

v R= - - vF '  (x)/R; v o .= - - v y  (x)/(R s in  6)); x = cos O; 

P = P= + pv2g (x)/R2; T = T + 7~ (x)/R 8. 

Here and henceforth the prime denotes differentiation, and without loss of generality, the 

values of p~, T~ can be considered zero. 

After substituting these expressions into the free convection equation [i] and simple 
manipulation, the problem is reduced to a system of ordinary differential equations 
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Fig. I. Distribution of the horizontal velocity (a) and tem- 
perature (b) with height: i) Pr = 0, Gr = 200; 2) Pr = 0.7, 

Gr = 35. 

(1 - -  x 2) y~v _ 4xy - -  (y2/2) '"  = Or (x#'  + 3~), 

(1 - - x  z) ~ " - - 2 x # '  q- 6 8  = Pr (b'~' q- 3y '~)  

(i) 

(2) 

with the boundary conditions 

v ( o ) = v ' ( o ) = o ;  ~ ( o ) = 1 ;  y ( 1 ) = o ;  

! y ' ( 1 ) l <  oo; @' (1) = 3 [1 - -  P r y '  (1)/2] 8 (1). 

The last two conditions are associated with the requirement of analyticity of the velocity 

and temperature fields on the axis of symmetry. 

Following the methodology in [3], it is convenient to introduce the function F(x) such 

that 

F ' " = G r ( x ~ ' + 3 ~ ) ;  F ( 1 ) = F ' ( 1 ) = F " ( 1 ) = 0 .  (3) 

Then (1) i s  i n t e g r a t e d  t h r i c e  and w i t h  t he  b o u n d a r y  c o n d i t i o n s  t a k e n  i n t o  a c c o u n t  f o r  x = 1 
reduces to the form 

( 1  - -  x z) y" @ 2xy  - -  yz/2 = F (x) - -  C (1 - -  x) ~. (4) 

By v i r t u e  o f  t he  b o u n d a r y  c o n d i t i o n s  on a p l a n e  the  c o n s t a n t  of  i n t e g r a t i o n  C i s  c o n n e c t e d  
to  F(x)  by t he  r e l a t i o n s h i p  C = F ( 0 ) .  

The f o l l o w i n g  r e p r e s e n t a t i o n  i s  v a l i d  f o r  t he  f u n c t i o n  F(x)  

GF 1 
F (x) -- 2 S (x - -  02 [18' (t) + 38 (t)l dt, 

x 

from which 

Gr 1 Or 
F ( O ) - -  2 .f [tas(t)l '  xt . . . . .  2 ~(1). 

0 

Consequently, it is expedient to integrate the system (2)-(4) between x = 1 and x = 0 by 
giving trial values ~(i) and y'(1) and thereby reducing the boundary value problem to a 
Cauchy problem for the numerical analysis. The quantity y'(1) is not determined by (4) but 
is a free parameter because x = 1 is a singular point of (4). The value ~" is found separate- 
ly by means of differentiating (2) and (4) and utilizing the analyticity conditions. Con- 

sequently, after simple calculations 

~ " ( 1 ) = f l - - P r v ' ( 1 ) l ~ ' ( 1 ) - -  3 P r S ( 1 ) { C + ~ ' ( 1 ) I I - - y ( i ) / i ] } .  
4 
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Fig. 2. 
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For curves 1 and 2, respectively, y'(1) = 
-460.5; -3000. Curve 3 separates the domains of one and two-cell regimes. • 
U are the boundaries for existence of the regular and logarithmically singular 

solutions with respect to the temperature for Pr = 0. 

Fig. 3. Nature of the passage to the limit as Pr § 0 for the velocity (b) and 
the temperature (a), Gr = -150. Curves i, 2, and 3 correspond to Pr = 0, 0.04, 
0.063 and 4 to O = l-3x 2 

The quantity y'(1) must be selected such that y(0) = 0 will be obtained as a result of integra- 
tion. The condition y'(0) = 0 is here satisfied automatically. Then by renormalizing %(x) 
so that 8(0) = I, we obtain the solution of the initial problem. 

In the Pr = 0 case, (2) is integrated analytically: %(x) = l-3x 2. The temperature on the 
axis is twice the temperature on the plane and has the opposite sign. For Gr > 0 we have an 
"iceberg" type situation, and for Gr < 0 a "volcano." Applying the substitution y = -2(1 -- 
x2)U'/U and taking account of the temperature distribution obtained, we easily arrive at the 

equation 

Gr x 
u "  - - -  u = o ,  u (o)  = 1, u '  (o)  = o .  ( 5 )  

8 

A solution of (5) is the Airey function [i0] that has a representation of an everywhere 

convergent series 

U = "~" a,~t~; t = G r  xU48;  

r t~0  

ao : :  1; a~ = 2a~_l /[n(3n--1)] ,  n = 1, 2 . . . .  

The function U(x) should not have zeroes in the interval 0<~x < 1 for y(x) to be 
regular. For Gr > 0 the function U(x) is positive for all x/> 0; consequently, the iceberg 
problem is solvable for any quadrupole intensity. Since U'(x) > 0 for x > 0 then within the 
interval y(x) < 0. This means that the flux is directed downward along the axis and later 
spreads onto the plane from the origin. 

Let us consider the motion for Gr >> 1 for which we return to (4) which has the follow- 
ing form in case Pr = 0 

(1 - -  x ~) V' + 2 x v - -  9 2 / 2  = - - G r  x (1 - -  xZ)Z/4. 

For Gr >> i by neglecting linear terms in the left side we obtain the potential equation 

vp = - (1 - x~) VGFUfx/2. 
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Fig. 4. Dependence of the coefficient for the logarith- 
mically singular solution on the Grasshoff number for 

Pr = 0. 

! 

The derivative yp becomes infinite for x = 0, which corresponds to an infinite velocity 

on the plane. Taking account of the influence of viscosity a boundary layer occurs near the 
plane. 

The equation linearized with respect to y has the solution 

gZ = -- Gr x ~ (1 -- x2) /8 ,  

which is applicable for small Grasshoff numbers in the whole domain and in a small neighbor- 
hood of the wall for large numbers. 

There follows from the requirement of adjointness of the solutions ys and yp(X) that 
the thickness of the near-wall boundary layer is ~Gr-~/~ while the maximal value of the 
longitudinal velocity is ~Gr 2/3. Therefore, as the Grasshoff number increases a powerful 

near-wall jet is formed. 

For Pr > 0 the velocity distribution remains qualitatively the Same as for Pr = 0. 
However, the predominance of the convective mechanism of heat transfer for large Grasshoff 
numbers results in the fact that the domain of positive temperatures diminishes to the thin 
near-wall layer of width ~i/(PrGr) (Fig. i). The results of computations are represented 
in cylindrical (z, r, ~ ) coordinates for greater clearness 

v r - -  ~--- [( 1 - -  x z) g '  q -  x g l ;  r = R sin @; z = R cos O. 
g 

S u m m a r i z i n g  t h e  a n a l y s i s  o f  t h e  c a s e  Gr > 0 i t  c a n  b e  s a i d  t h a t  a s t r o n g  c o l d  w i n d  b l o w s  
f r o m  t h e  " i c e b e r g " ,  a s  s h o u l d  : g e n e r a l l y  b e  e x p e c t e d .  

The "volcano" problem is more abundant in surprises. Again we first set Pr = 0. Since 
Gr < 0 the solutions (5) are oscillatory in nature for positive x. In order for the solu- 
tion y(x) not to have poles the roots of U(x) should be outside the interval (0, i). The 

smallest zero in absolute value forlthe function U(t) equals tl z -1.306 while xl = (48ti/ 
Gr) I/3. As ]Grl grows, the quantity x~ diminshes and becomes equal to one for Gr = Gr, = 

48ti ~ -62.7. The zeroes of U(x) and U'(x) alternate, as follows from (5); consequently 
if [Grl < IGr, l, then in the interval (0, i), U(x) > 0, U'(x) < 0, i.e., y(x) > 0. This 
means that the flow is ascending, along the plane it is directed towards the origin, and 
later upward along the axis of symmetry. As x~ approaches one y'(1) § -~. Therefore, a 
strong jet is developed near the axis. 

Eor x~ = i the roots and poles of the function y(x) merge at the point x = i. The value 
of y(1) becomes different from zero but finite: y(1) = 4. In other words, in the critical 
situation the jet momentum and the velocity on the axis become infinite but the ejection 
capacity of the jet remains finite and a sink with the volume mass flow rate 8~ per unit 
length is formed on the axis. For [Gr I > IGr, l the solution of the boundary value problem 
posed ceases to exist. An analogous paradox was first detected and investigated in [4]. 

A small parameter e = -i/y'(i) and an "interior" coordinate n = (i-x)/s can be in- 
troduced in the near-critical situation. Then the principal term of the interior asymptotic 
expansion in E is the solution 

g* = 4q/(4 ~- ~1), 
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which agrees with the Schlichting solution for a circular jet in the boundary layer approxi- 

mation [I]. 

For Pr > 0 there is no crisis, the solution exists even for IGr] >> [Gr, l (computations 
were performed up to Gr = -103). The results represented in Fig. 2 indicate that for small 
values of IGr[ (above curve 3 in Fig. 2) the flow regime is one-celled while for large ]Gr] 
it is two-celled (see the diagram in Fig. 2). As Pr grows the line of separation asympto- 
tically has the nature Gr ~ -16/Pr. The flow in the two-cell regime is directed to the 
origin along a conical surface on which the temperature is negative and then it s~parates 
into two branches. One part of the flow spreads along the plane from the origin, while the 

other forms a near-axis jet beating upward. Therefore. for sufficiently large Grasshoff 
numbers and in the "volcano" situation a stong cold wind blows on the surface while the heat 
of the "volcano" entrains the jet upward. 

The question arises as to what occurs as Pr + 0. When IGrl < [Gr, l the solution goes 

over into that obtained for Pr = 0 in a continuous manner. The postcriticai transition is 
illustrated by curves I and 2 in Fig. 2 on which y'(1) = const. These curves have the semi- 

axis Gr < Gr,, Pr = 0 as limit when y'(1) + -~. The maximal value of y(x) tends to 4 here 
and the location of the maximum to x = i. Physically this means that as the!Prandtl number 
diminishes near the axis a Schiichting jet is formed and accentuated. In this respect the 
same occurs also for Pr = 0, Gr + Gr,. But the temperature distribution does not tend to 
the solution considered above for Pr = 0 (Fig. 3). 

In (2) the right side tends to zero for any x # • as Pr + 0. A singular case is x = i 
since y'(1) § -~, where y'(x) acquires a singularity of delta function type in the limit, for 
which the coefficient is asymptotically independent of the Prandti number and equals 4. The 
y'(x) in (2) is multiplied by 3Pr%(x). If %(I) were to remain bounded in the limit, then the 
coefficient of the delta-function would vanish and it wou• not influence the nature of the 

solution. It remains to admit that @(I) § - ~ as Pr § 0. The numerical computations indi- 
cate this favorably indeed. Therefore, in order to find the limit solution one should not 
limit oneself to the analytic solution of (2) for Pr = 0. The general solution has the form 

1 §  
=A~(1--3xZ) q-A 6 x + ( 1 - - 3 x Z ) l n l _ x ] .  

By virtue of the normalization conditions AI = i. The coefficient A is to be determined for 
the solution with the logarithmic singularity. We find as a result of integrating (3) 

C - F (0) = A Or/2. 

Substituting these expressions into (4) we solve the boundary value problem for it: y(1) = 
4, y(0) = 0. As a result of differentiating (4) we determine y'(1) = 2. (This value of the 
derivative corresponds to the "outer" expansion in ~). Consequently~ for x = i there is all 
the necessary information for the solution of the Cauchy problem. The connection between the 
parameters A and Gr is found from the necessity to satisfy the condition y(0) = 0 (Fig. 4). 
The lower branch of the dependence A(Gr) corresponds to the limit solutions as Pr § 0. In 
Fig. 3 where such a passage to the limit is shown, the temperature distribution for Pr = 0.04 

is already graphically indistinguishable from the limit, convergence in y(x) is slower, 
"smoothing" of the logarithmic singularity in %(x) noticeably influences F(x) and C. 

It is seen from Fig. 4 that for sufficiently large Grasshoff numbers (]GrI > 202) no 
solution with a logarithmic singularity exists if the Prandtl number equals zero. The pass- 
age to the limit Pr § 0 for ~IGr[ > 202 results in a solution with a stronger singularity than 
the logarithmic in the temperature distribution. 

The upper branch of the dependence A(Gr) in combination with the lower one bounds the domain 
of existence of solutions of another problem for Pr = 0 when a logarithmic singularity is 
given a priori for the temperature field on the axis of symmetry in addition to the quadru- 
pole at the origin. Solutions satisfying the conditions y(1) = 0, Iy'(1)I < ~ exist in the 
domain lying to the left of the curve presented in Fig. 4. They are also separated into two- 
cell and one-cell. Friction on the Diane is determined by the quantity ~"(0)=Gr(A--1/4).  
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Consequently, for A ~ • the flow is purely ascending while separation occurs as the quantity 
A exceeds the value �88 Snd a return flow occurs near the plane. 

What are the physical reasons for the occurrence of singularities in the temperature 
distribution in the quadrupole problem as the Prandtl number tends to zero? Seemingly, the 
relative value of heat convection drops as Pr diminishes and diffusion should predominate, 
which usually smoothes all singularities. The paradoxicality of the situation in this case 
is explained by the fact that the velocity near the axis becomes infinite for sufficiently 
high Grasshoff numbersas Pr diminishes. Consequently, the convective mechanism remains 
governing near the axis. Development of the singularity is assured by the positive feedback 
between the momentum and heat transfer. An increase in the jet velocity raises the ejection 
and its associated convective heat transfer to the axis. Heat accumulation at the axis 
results in the growth of the Archimedes force there and, therefore, of the jet momentum. 

NOTATION 

(R, @; Q), (r, z, ~), spherical and cylindrical coordinates; v, VR, V@, Vr, velocity 
and its appropriate components; T, temperature; p, density; p, pressure; ~, kinematic visco- 
sity; X, thermal diffusivity; Gr, Pr, Grasshoff and Prandtl criteria; x, t, ~, auxiliary 
dimensionless arguments; y, ~, F, U, auxiliary dimensionless functions; C, A, A~, numerical 
constants; y, a factor in the temperature distribution at the wall [K.m~]. Subscripts: ~, 
parameters at infinity; *(subscript), criticai~value, and *(superscript), internal decompo- 
sition. 
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